
システム概要
GaiaSorterシステムは、均質な光源、分光カメラ、サンプルステージを用いたコンピュータ制御によるサンプルの全自動ソーティングを行うハイパースペクトルイメージング装置です。
光源により照射されたサンプルからの発光光が分光カメラでスペクトル情報を持つ1次元画像が撮像されます。サンプルはステージによりスキャンされ、連続的にリアルタイムスペクトル画像を得る事が出来ます。
全スペクトル情報を持つデータはソフトウェアにより保存され、データ分析によりサンプルに含まれる水分や酸味等必要な情報を得る事が出来ます。
野菜や果物の成分分類、異物の分離情報、データのフォローアップ等サンプルの自動ソーティングを実現します。
高分解能s-SNOMイメージング
シングルラインレーザーやチューナブルレーザーに対応するシングルラインディテクションモジュールを用いて可視、赤外及びTHzという多様な波長での高分解能なs-SNOMイメージングが可能です。
ナノFT-IR
NeaSNOMのブロードバンドディテクションモジュールは、ブロードバンド光源により波数分解能6cm-1、オプションで最小3㎝-1という高分解能な分光計測を可能にします。可視、赤外、THzに対応出来ます。


透過計測モード
NeaSNOMはサンプル透過計測に対応するオプションにより、0.5~20umの波長範囲でs-SNOMイメージングが可能です。サンプルへの照射スポットサイズは1.6~100umの範囲で可変です。

一目でNeaSNOMプラットフォーム仕様
ヘッドのプロービング |
|
---|---|
サンプルポジショナー |
|
サンプルXYスキャナ |
|
直立光学顕微鏡 |
|
光を当て&コレクションユニット |
|
走査制御装置 |
|
アプリケーション
Details | Title | Short Description |
---|---|---|
![]() |
Analysis of semiconductor device structures | Semiconductor device structures can be characterized by near-field microscopy at suitable wavelengths. |
![]() |
Identification of materials in semiconductor devices | Based on their unique near-field spectral signature infrared-active materials can be identified with NeaSNOM. |
![]() |
Mapping local conductivity in semiconductor devices | Near-field microscopy at infared and terahertz frequencies allows to quantify free carrier properties at the nanoscale without the need of electrical contacts. |
![]() |
Spectroscopic indentification of materials | NeaSNOM enables spectroscopic identification of materials at the nanometer scale. |
![]() |
Characterization of polymer blends | Near-field images of a polymer blend made of Polystyrene (PS) and Poly (methyl methacrylate) (PMMA) reveal the nanostructured phase separation of the materials. |
![]() |
Studying single viruses | Recording “fingerprint” spectra of single viruses and polymer nanobeads allows for identification of individual particles. |
![]() |
Investigating local conductivity of semiconductor nanowires | The local conductivity of nanowires can be investigated by infrared near-field microscopy. |
![]() |
Identification of individual nanoparticles | Near-field imaging allows to distinguish individual nanoparticles of only 7nm in diameter. |
![]() |
Structural analysis of IR-active materials | Structural modifications of infrared-active materials can be detected and spatially mapped by near-field imaging at the appropriate frequencies. |
>![]() |
Non-invasive imaging of stress/strain fields | Mapping nanoscale stress/strain fields around nanoindents in the surface of Silicon Carbide (SiC) crystals. Compressive/tensile strain occurs in bright/dark contrast respectively. |
![]() |
Nanoscale phase transitions | The high spatial resolution of infrared near-field microscopy allows for detailed studies of phase transitions in materials like the insulator-to-metal transition of vanadium dioxide (VO2) thin films. |
![]() |
Imaging optical gap fields | Highly confined optical fields (“hot spots”) can be detected in the gap between nanoparticles. |
![]() |
Analyzing optical antennas | Amplitude and phase resolved near-field mapping of the local field distribution on resonant IR antennas can be used to analyze the antenna design and its functionality. |
![]() |
IR nanofocusing on transmission lines | Direct visualization of infrared light transportation and nanofocusing by miniature transmission lines is possible by amplitude- and phase-resolved near-field microscopy. |
![]() |
Mapping optical fields of resonant particles | Near-field imaging of resonant gold nanodiscs reveals a dipolar oscillation mode. |
![]() |
Studying superlensing and meta-materials | Direct verification of superlensing can be achieved by near-field microscopy as the local field transmitted by a superlens can be investigated in the near-field of the lens. |
![]() |
Characterization of optical surface waves | Amplitude and phase resolved studies of surface wave (propagating surface phonon polaritons) propagation and interference. |
![]() |
Near-field spectroscopy with broadband laser sources | Neaspec introduces a broadband near-field infrared spectroscopy technique using fs-pulsed laser sources for tip illumination. Continous spectra can be recorded within only few seconds. |
![]() |
Nano-FTIR near-field spectroscopy | The NeaSNOM system allows for recording infrared spectra with a thermal source at a resolution that is 100 times better than in conventional infrared spectroscopy. |